Press "Enter" to skip to content

Scientists created a clock so accurate that it measures space-time, and possibly dark matter

To mark the passage of time, you could track the height of the sun in the sky or the passing of the seasons. Or, you could measure the vibrations of an atom.

That’s what scientists at the National Institute of Standards and Technology (NIST) in Maryland have done, creating two clocks that each trap 1,000 atoms of the element ytterbium in grids of lasers. These lasers are able to measure the atoms’ vibrations with near-perfect accuracy (there’s roughly one billionth of a billionth chance of error.)

The scientists have measured time in atom vibrations not simply to show off, but because the scientific definition of a second is determined by the frequency of these vibrations. As Katherine Foley wrote in Quartz, scientists in 1967 defined a second as “9,192,631,770 periods of the radiation” of an atom of the isotope cesium-133 atom at temperatures of absolute zero.

The research behind the atomic clocks, published in Nature on Nov. 28, show that not only are the devices highly accurate, they also excel in other measures of clock evaluation: Stability (how much a clock’s frequency changes over time), and reproducibility (how closely the two clocks tick at the same frequency). The scientists behind these clocks have created atom clocks before, but their latest version is even more accurate, thanks in part to thermal and electric shielding, which protects the atoms from external electric fields.

Indeed, they’re so accurate that they show the effect of gravity, as predicted by Einstein’s theory of relativity: The stronger the pull of gravity, the slower the vibrations of atoms and the passing of time. This effectively means that the clocks are showing not simply time, but also their distance from a center of gravity. They’re effectively measuring the space-time continuum.

CONTINUE @ QZ